

# 2nd African Forum On Urban Forests

Green Horizons: Shaping the Future Resilience of African Cities through Urban Forests

18 March 2025 - 21 March 2025





a world class African city







# Assessing the impact of land cover/land use changes on urban heat Island in Bulawayo metropolitan city, Zimbabwe.

SETHI DUBE





# Introduction and background

- Urbanisation coupled with industrialisation cause massive LULC changes which result in UHI.
- UHI is known to result from urban landscape surface features that make urban areas warmer
- Changes in LULC also accelerate climate change through increased UHI (Kafy et al., 2021)
- The Urban Heat Island effect has been exacerbated by climate change with severe consequences for human health and environmental sustainability.





# Introduction and background

- Urban and rural areas in Africa has a temperature difference of between 0.17 and 2.21 degrees Celsius. In Zimbabwe, Harare's urban heat island intensity was found to be 1.5°C by 2015.
- African cities are increasingly urbanizing and thus, experiencing increased UHI
- Numerous studies have used remote sensing to study LULC and LST globally and in Africa





### Introduction Cont--

- Therefore, GIS and remote sensing technologies provide useful and spatially explicit tools for monitoring urban environments
- LULC indices such as NDVI, NDBI, UHII and NDWI has been widely to assess LULC change and their effects on LST and UHI
- However, few studies have studied UHI in Zimbabwe, thus, this study sought to understand the spatio-temporal dynamics of LULC changes and their influence on land surface temperature and urban heat island in Bulawayo between 1990 and 2020





# **Study Area**

- Bulawayo is the second largest city located in the south west of Zimbabwe, and has been experiencing high urbanization
- The city has a sub-tropical climate
- However, the daily minimum temperatures have risen approximately by 2.6°C while the daily maximum have increased by 2°C in the region (Brown et al, 2012)









### **Methods**

- This study employed thermal remote sensing and GIS technology to investigate the relationship between land use/land cover changes and UHI in Bulawayo Metropolitan City.
- Landsat TM and Landsat 8 OLI imagery were used for LULC classification in 1990 and 2020, respectively obtained from USGS Earth explorer
- The spatio-temporal pattern of LST, NDVI and UHII were computed from Landsat 5 and 8 imagery and correlated with land use type and indices.





### **Methods Cont--**

 The methodology is diagrammatically represented as a flow chart







### Results







## **Results Cont---**

| YEAR       | 1990                        | 1994-2004             | 2004                        | 2004-2020             | 2020                        | 1990-2020             |
|------------|-----------------------------|-----------------------|-----------------------------|-----------------------|-----------------------------|-----------------------|
| Class      | Total area composition (ha) | Increase/<br>decrease | Total area composition (ha) | Increase/<br>decrease | Total area composition (ha) | Increase/<br>decrease |
| Built up   | 9217                        | +20 %                 | 17531                       | +38 %                 | 25525                       | +53,6%                |
| Water      | 1121                        | -2.4%                 | 149                         | -0.3%                 | 115                         | -0,2%                 |
| Vegetation | 14221                       | -39%                  | 8299                        | -15,6                 | 7154                        | -15.9%                |
| Bare lands | 21284                       | -46.4%                | 20990                       | -45.8%                | 14885                       | -31.2%                |
| Total      | 45842                       |                       | 46969                       |                       | 47678                       |                       |





• The results showed a significant decrease in vegetation and barren lands (from 39% to 15.9%) and an increase in built-up areas (from 20% to 53.6%) due to rapid urbanization.





 The Normalized Difference
Vegetation Index (NDVI) values also declined, indicating a loss of vegetation

































- The results depict an increase in surface temperatures in Bulawayo from 1990 to 2020.
- Low surface temperature was observed in areas with water and vegetation, while highest surface temperatures were observed on bare land and constructed surfaces









- There was a very strong negative correlation between the LST and the NDVI.
- Thus, greening urban areas can be a solution to UHI effect





### **Summary of findings**

- The results show rapid LULC dynamics. Vegetation cover and bare lands decreased significantly, while built up increased.
- The LST is influenced by LULC types. 2020 recorded highest temperature of 49.2 degrees Celsius
- High temperature surfaces expanded while LST temperatures increased between 1990and 2020.
- High density areas recorded higher temperatures than the low density eastern counterparts due to higher green spaces like parks and vegetation in the eastern part.
- UHI has increased, showing higher trends within the CBD area and bare lands
- There was a very strong negative correlation between the LST and NDVI.



### Recommendations

- The study recommends urban forestry as a strategy to improve the urban heat island effect particularly under the current climate change.
- Expand green infrastructure to reduce the warming effect
- Promotion of urban agriculture on bare lands
- Increase and Investments in green spaces such as green roofs, parks, and botanical gardens across the city through public and private partnerships



# Thank You.

